top of page

Member Publications

If you have a publication to share, email


Jan 15, 2023

Defective Mitochondrial Quality Control during Dengue
Infection Contributes to Disease Pathogenesis

Bharati Singh, Kiran Avula, Shamim Akhtar Sufi, Nahid Parwin, Sayani Das, Mohd Faraz Alam, Subhashish Samantaray, Leelakrishna Bankapalli, Alankrita Rani, Kokavalla Poornima, Biswajita Prusty, Tareni P. Mallick, Shubham K. Shaw,
Hiren Dodia, Shobhitendu Kabi, Trupti T. Pagad, Sriprasad Mohanty, Gulam Hussain Syed

Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis.

Dec 6, 2022

USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction

Alexandra Hertel, Ludovico Martins Alves, Henrik Dutz, Georg Tascher, Florian Bonn, Manuel Kaulich, Ivan Dikic, Stefan Eimer, Florian Steinberg, Anja Bremm

The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.

Dec 5, 2022

Excessive protein accumulation and impaired autophagy in the hippocampus of Angelman syndrome modeled in mice

Francesca Aria, Kiran Pandey, Cristina M. Alberini

Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated-cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism.

Nov 18, 2022

Chaperone-mediated autophagy regulates adipocyte differentiation

Susmita Kaushik, Yves R Juste, Kristen Lindenau, Shuxian Dong, Adrián Macho-González, Olaya Santiago-Fernández, Mericka McCabe, Rajat Singh, Evripidis Gavathiotis, Ana Maria Cuervo

Adipogenesis is a tightly orchestrated multistep process wherein preadipocytes differentiate into adipocytes. The most studied aspect of adipogenesis is its transcriptional regulation through timely expression and silencing of a vast number of genes. However, whether turnover of key regulatory proteins per se controls adipogenesis remains largely understudied. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal protein degradation that, in response to diverse cues, remodels the proteome for regulatory purposes. We report here the activation of CMA during adipocyte differentiation and show that CMA regulates adipogenesis at different steps through timely degradation of key regulatory signaling proteins and transcription factors that dictate proliferation, energetic adaptation, and signaling changes required for adipogenesis.

Jun 10, 2022

Emerging roles of mitotic autophagy

Eugenia Almacellas, Caroline Mauvezin

Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.

Jun 1, 2022

Mechanoautophagy: Synergies Between Autophagy and Cell Mechanotransduction at Adhesive Complexes

Andrea Ravasio, Eugenia Morselli, and Cristina Bertocchi

Cells are exposed and respond to various mechanical forces and physical cues stemming from their environment. This interaction has been seen to differentially regulate various cellular processes for maintenance of homeostasis, of which autophagy represents one of the major players. In addition, autophagy has been suggested to regulate mechanical functions of the cells including their interaction with the environment. In this minireview, we summarize the state of the art of the fascinating interplay between autophagy and the mechanotransduction machinery associated with cell adhesions, that we name ¨Mechanoautophagy¨

May 20, 2022

Ambra1 deficiency impaired mitophagy in skeletal muscle

Lisa Gambarotto, Samuele Metti, Martina Chrisam, Cristina Cerqua, Patrizia Sabatelli, Andrea Armani, Carlo Zanon, Marianna Spizzotin, Silvia Castagnaro, Flavie Strappazzon, Paolo Grumati, Matilde Cescon, Paola Braghetta, Eva Trevisson, Francesco Cecconi, Paolo Bonaldo

Maintaining healthy mitochondria is mandatory for muscle viability and function. An essential surveillance mechanism targeting defective and harmful mitochondria to degradation is the selective form of autophagy called mitophagy. Ambra1 is a multifaceted protein with well-known autophagic and mitophagic functions. However, the study of its role in adult tissues has been extremely limited due to the embryonic lethality caused by full-body Ambra1 deficiency.

To establish the role of Ambra1 as a positive regulator of mitophagy, we exploited in vivo overexpression of a mitochondria-targeted form of Ambra1 in skeletal muscle. To dissect the consequence of Ambra1 inactivation in skeletal muscle, we generated muscle-specific Ambra1 knockout (Ambra1fl/fl:Mlc1f-Cre) mice. Mitochondria-enriched fractions were obtained from muscles of fed and starved animals to investigate the dynamics of the mitophagic flux.

Our data show that Ambra1 has a critical role in the mitophagic flux of adult murine skeletal muscle and that its genetic inactivation leads to mitochondria alterations and myofibre remodelling. Ambra1 overexpression in wild-type muscles is sufficient to enhance mitochondria clearance through the autophagy-lysosome system. Consistently with this, Ambra1-deficient muscles display an abnormal accumulation of the mitochondrial marker TOMM20 by +76% (n = 6–7; P < 0.05), a higher presence of myofibres with swollen mitochondria by +173% (n = 4; P < 0.05), and an alteration in the maintenance of the mitochondrial membrane potential and a 34% reduction in the mitochondrial respiratory complex I activity (n = 4; P < 0.05). Lack of Ambra1 in skeletal muscle leads to impaired mitophagic flux, without affecting the bulk autophagic process. This is due to a significantly decreased recruitment of DRP1 (n = 6–7 mice; P < 0.01) and Parkin (n = 6–7 mice; P < 0.05) to the mitochondrial compartment, when compared with controls. Ambra1-deficient muscles also show a marked dysregulation of the endolysosome compartment, as the incidence of myofibres with lysosomal accumulation is 20 times higher than wild-type muscles (n = 4; P < 0.05). Histologically, Ambra1-deficient muscles of both 3- and 6-month-old animals display a significant decrease of myofibre cross-sectional area and a 52% reduction in oxidative fibres (n = 6–7; P < 0.05), thus highlighting a role for Ambra1 in the proper structure and activity of skeletal muscle.

Our study indicates that Ambra1 is critical for skeletal muscle mitophagy and for the proper maintenance of functional mitochondria.

Jan 27, 2022

Aberrant upregulation of the glycolytic enzyme
PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

Lopez-Fabuel et al

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.

Nov 14, 2021

TRAIL Triggers CRAC-Dependent Calcium Influx and Apoptosis through the Recruitment of Autophagy Proteins to Death-Inducing Signaling Complex

Kelly Airiau, Pierre Vacher, Olivier Micheau, Valerie Prouzet-Mauleon, Guido Kroemer, Mohammad Amin Moosavi, and Mojgan Djavaheri-Mergny.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively kills various cancer cell types, but also leads to the activation of signaling pathways that favor resistance to cell death. Here, we investigated the as yet unknown roles of calcium signaling and autophagy regulatory proteins during TRAIL-induced cell death in leukemia cells. Taking advantage of the Gene Expression Profiling Interactive Analysis (GEPIA) project, we first found that leukemia patients present a unique TRAIL receptor gene expression pattern that may reflect their resistance to TRAIL. The exposure of NB4 acute promyelocytic leukemia cells to TRAIL induces intracellular Ca2+ influx through a calcium release-activated channel (CRAC)-dependent mechanism, leading to an anti-apoptotic response. Mechanistically, we showed that upon TRAIL treatment, two autophagy proteins, ATG7 and p62/SQSTM1, are recruited to the death-inducing signaling complex (DISC) and are essential for TRAIL-induced Ca2+ influx and cell death. Importantly, the treatment of NB4 cells with all-trans retinoic acid (ATRA) led to the upregulation of p62/SQSTM1 and caspase-8 and, when added prior to TRAIL stimulation, significantly enhanced DISC formation and the apoptosis induced by TRAIL. In addition to uncovering new pleiotropic roles for autophagy proteins in controlling the calcium response and apoptosis triggered by TRAIL, our results point to novel therapeutic strategies for sensitizing leukemia cells to TRAIL.

Oct 6, 2021

Targeting CAMKK2 and SOC Channels as a Novel Therapeutic Approach for Sensitizing Acute Promyelocytic Leukemia Cells to All-Trans Retinoic Acid

Faten Merhi, Karla Alvarez-Valadez, Jenifer Trepiana, Claire Lescoat, Alexis Groppi, Jean-William Dupuy, Pierre Soubeyran, Guido Kroemer, Pierre Vacher, and Mojgan Djavaheri-Mergny

Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.

Oct 1, 2021

The Autophagy, Inflammation and Metabolism Center international eSymposium - an early-career investigators' seminar series during the COVID-19 pandemic

Jose L Nieto-Torres, Joanne Durgan, Anais Franco-Romero, Paolo Grumati, Carlos M Guardia, Andrew M Leidal, Michael A Mandell, Christina G Towers, Fei Wang

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.

Jul 7, 2021

A Mammalian Target of Rapamycin Perilipin 3 (mTORC1-Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis

Marina Garcia-Macia et al

NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD.

bottom of page